
PHYSICAL REVIEW E APRIL 1997VOLUME 55, NUMBER 4
On-line AdaTron learning of unlearnable rules

Jun-ichi Inoue and Hidetoshi Nishimori
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan

~Received 23 December 1996!

We study the on-line AdaTron learning of linearly nonseparable rules by a simple perceptron. Training
examples are provided by a perceptron with a nonmonotonic transfer function that reduces to the usual
monotonic relation in a certain limit. We find that, although the on-line AdaTron learning is a powerful
algorithm for the learnable rule, it does not give the best possible generalization error for unlearnable problems.
Optimization of the learning rate is shown to greatly improve the performance of the AdaTron algorithm,
leading to the best possible generalization error for a wide range of the parameter that controls the shape of the
transfer function.@S1063-651X~97!10204-5#
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I. INTRODUCTION

The problem of learning is one of the most interesti
aspects of feed-forward neural networks@1–3#. Recent ac-
tivities in the theory of learning have gradually shifted t
ward the issue of on-line learning. In the on-line learni
scenario, the student is trained only by the most recent
ample, which is never referred to again. In contrast, in
off-line ~or batch! learning scheme, the student is given a
of examples repeatedly and memorizes these examples
to minimize the global cost function. Therefore, the on-li
learning has several advantages over the off-line method.
example, it is not necessary for the student to memorize
whole set of examples, which saves a lot of memory spa
In addition, theoretical analysis of on-line learning is usua
much less complicated than that of off-line learning that
ten makes use of the replica method.

In many of the studies of learning, authors assume that
teacher and student networks have the same structures
problem is called learnable in these cases. However, in
real world we find innumerable unlearnable problems wh
the student is not able to perfectly reproduce the outpu
teacher in principle. It is therefore both important and int
esting to devote our efforts to the study of learning unlea
able rules.

If the teacher and student have the same structure, a n
ral strategy of learning is to modify the weight vector
studentJ so that this approaches teacher’s weightJ0 as
quickly as possible. However, if the teacher and student h
different structures, the student trained to satisfyJ5J0

sometimes cannot generalize the unlearnable rule better
the student withJÞJ0. Several years ago, Watkin and Ra
@4# investigated the off-line learning of unlearnable ru
where the teacher is a perceptron with a nonmonotonic tr
fer function while the student is a simple perceptron. Th
discussed the case where the number of examples is of o
unity and therefore did not derive the asymptotic form of t
generalization error in the limit of large number of trainin
examples. Furthermore, as they used the replica method
der the replica symmetric ansatz, the result may be unst
against replica symmetry breaking.

For such a type of nonmonotonic transfer function, a
of interesting phenomena have been reported. For exam
551063-651X/97/55~4!/4544~8!/$10.00
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the critical loading rate of the model of Hopfield type@5–7#
or the optimal storage capacity of perceptron@8# is known to
increase dramatically by nonmonotonicity. It is also wor
noting that perceptrons with the nonmonotonic transfer fu
tion can be regarded as a toy model of a multilayer perc
tron, a parity machine@9#.

In this context, Inoue, Nishimori, and Kabashima@10#
recently investigated the problem of on-line learning of u
learnable rules where the teacher is a nonmonotonic per
tron: the output of the teacher isTa(v)5sgn@v(a2v)(a
1v)#, where v is the input potential of the teacherv
[AN(J0•x), with x being a training example, and the st
dent is a simple perceptron. For this system, difficulties
learning for the student can be controlled by the widtha of
the reversed wedge. Ifa5` or a50, the student can learn
the rule perfectly and the generalization error decays to z
asa21/3 for the conventional perceptron learning algorith
anda21/2 for the Hebbian learning algorithm, wherea is the
number of presented examplesp, divided by the number of
input nodesN. For finite a, the student cannot generaliz
perfectly and the generalization error converges expon
tially to a nonvanishinga-dependent value.

In this paper we investigate the generalization ability
student trained by the on-line AdaTron learning algorith
with examples generated by the above-mentioned nonmo
tonic rule. The AdaTron learning is a powerful method f
learnable rules both in on-line and off-line modes in t
sense that this algorithm gives a fast decay, proportiona
a21, of the generalization error@11–13#, in contrast to the
a21/3 anda21/2 decays of the perceptron and Hebbian alg
rithms. We investigate the performance of the AdaTr
learning algorithm in the unlearnable situation and disc
the asymptotic behavior of the generalization error.

This paper is organized as follows. In Sec. II, we expla
the generic properties of the generalization error for our s
tem and formulate the on-line AdaTron learning. Some
the results of our previous paper@10# are collected here con
cerning the perceptron and Hebbian learning algorithms
are to be compared with the AdaTron learning. Section
deals with the conventional AdaTron learning both for lea
able and unlearnable rules. In Sec. IV we investigate
effect of optimization of the learning rate. In Sec. V the iss
of optimization is treated from a different point of view
4544 © 1997 The American Physical Society
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55 4545ON-LINE AdaTron LEARNING OF UNLEARNABLE RULES
where we do not use the parametera, which is unknown to
the student, in the learning rate. In Sec. VI we summarize
results and discuss several future problems.

II. THE MODEL SYSTEM

Let us first fix the notation. The input signal comes fro
N input nodes and is represented by anN-dimensional vector
x. The components ofx are randomly drawn from a uniform
distribution and thenx is normalized to unity. Synaptic con
nections from input nodes to the student perceptron are
expressed by anN-dimensional vectorJ, which is not nor-
malized. The teacher receives the same input signax
through the normalized synaptic weight vectorJ0. The gen-
eralization error iseg[^^U„2Ta(v)S(u)…&&, where S(u)
5sgn(u) is the student output with the internal potentialu
[AN(J•x)/uJu and ^^•••&& stands for the average over th
distribution function

PR~u,v !5
1

2pA12R2
expF2

~u21v222Ruv !

2~12R2! G . ~1!

HereR stands for the overlap between the teacher and
dent weight vectors,R[(J0•J)/uJ0uuJu. This distribution has
been derived from randomness ofx and is valid in the limit
N→`.

The generalization erroreg is easily calculated as a func
tion of R as follows@10#:

eg5E~R![2E
a

`

Dv HS 2
Rv

A12R2D
12E

0

a

Dv HS Rv

A12R2D , ~2!

whereH(x)[*x
`Dt with Dt[ exp(2t2/2)/A2p. It is impor-

tant that this expression is independent of specific learn
algorithm. Minimization ofE(R) with respect toR gives the
theoretical lower bound, or the best possible value, of
generalization error for givena. In Fig. 1 we showE(R) for
several values ofa. This figure indicates that the generaliz
tion error goes to zero if the student is trained so that
overlapR becomes 1 fora5` andR521 for a50. If the
parametera is larger than some critical valueac15A2 ln2
51.177, E(R) decreases monotonically from 1 to 0 asR
increases from21 to 1. Whena is smaller thanac1 , a local
minimum appears atR5R*[2A(2 ln22a2)/2 ln2, but the
global minimum is still atR51 as long asa is larger than
ac250.80. If a is less thanac2 , the global minimum is
found atR5R* , not atR51. This situation is depicted in
Figs. 2 and 3 where we show the optimal overlapR giving
the smallest value ofE(R) and the corresponding best po
sible value of the generalization error as functions ofa.
From these two figures, we see that the optimal overlap
gives the theoretical lower bound shows a first-order ph
transition ata5ac2 . Therefore, our efforts should be d
rected to finding the best strategy that gives the best pos
value of the generalization error for a wide range of t
parametera.
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It may be useful to review some of the results of Inou
Nishimori, and Kabashima@10# who studied the presen
problem under the perceptron and Hebbian algorithms.
the conventional perceptron learning, the generalization e
decays to zero asa21/3 if the rule is learnable (a5`),
whereas it converges to a nonvanishing valueE(R51
22D), where D[exp(2a2/2), exponentially for the un-

FIG. 1. Generalization error as a function ofR for
a5`,2,1,0.5, anda50.

FIG. 2. Optimal overlapR that gives the best possible value an
overlaps that give the residual error for Hebbian, perceptron, a
AdaTron learning algorithms.
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4546 55JUN-ICHI INOUE AND HIDETOSHI NISHIMORI
learnable case. This value ofE(R) is larger than the bes
possible value as seen in Fig. 3. Introduction of optimizat
processes of the learning rate improves the performance
nificantly in the sense that the generalization error then c
verges to the best possible value whena.ac2 . For the con-
ventional Hebbian learning, the generalization error dec
to the theoretical lower bound asa21/2 not only in the learn-
able limit a→` but for a finite range ofa, a.ac1 . How-
ever, fora,ac1 , the generalization error does not conver
to the optimal value.

III. LEARNING DYNAMICS

The on-line training dynamics of the AdaTron algorith
is

Jm115Jm2g~a!uU„2Ta~v !S~u!…x, ~3!

wherem stands for the number of presented patterns a
g(a) is the leaning rate. It is straightforward to obtain th
recursion equations for the overlapRm5(Jm•J0)/uJmiJ0u
and the length of the student weight vectorl m5uJmu/AN. In
the limitN→`, these two dynamical quantities become se
averaging with respect to the random training datax. For
continuous timea5m/N in the limit N→`, m→` with a
kept finite, the evolutions ofR and l are given by the fol-
lowing differential equations@10#:

dl

da
5
g2EAd

2l
2gEAd , ~4!

FIG. 3. Best possible value of the generalization error, the
sidual generalization errors of conventional Hebbian, percept
and AdaTron learning algorithms are plotted as functions ofa.
Except fora5` anda50, the AdaTron learning cannot lead th
student to the best possible value of the generalization error
addition, for a finite value ofa, the residual generalization error o
the AdaTron learning is larger than that of the perceptron learn
n
ig-
n-

s

d

-

dR

da
52

Rg2EAd

2l 2
1
gEAdR2GAd

l
, ~5!

where

EAd[^^u2U„2Ta~v !S~u!…&&5A2/pE
0

`

u2Du Ha~u,R!

~6!

with

Ha~u,R![HS a2Ru

A12R2D 1HS Ru

A12R2D 2HS a1Ru

A12R2D
~7!

and

GAd[^^uvTa~v !U„2Ta~v !S~u!…&&

5
1

p
~12R2!3/2F2 expS 2

a2

2~12R2! D21G
1A2/pRa~A12R2!DF122HS Ra

A12R2D G1REAd .

~8!

Equations~4! and ~5! determine the learning process. In th
rest of the present section we restrict ourselves to the cas
g51 corresponding to the conventional AdaTron learnin

A. Learnable case

We first consider the case ofg(a)51 and a5`, the
learnable rule. We investigate the asymptotic behavior of
generalization error whenR approaches 1,R512«, «→0,
and l5 l 0 , a constant. From Eqs.~6! and ~8!, we find EAd
;c«3/2 andGAd;(c22&/p)«3/2 with c58/(3&p). Then
Eq. ~5! is solved as«5(2/k)2a22 with

k[
2l 021

2l 0
2 c1

2&2cp

p l 0
. ~9!

Using this equation and Eq.~2!, we obtain the asymptotic
form of the generalization error as

eg5E~R!;
A2«

p
5
2&

pk

1

a
. ~10!

The above expression of the generalization error depend
l 0 , the asymptotic value ofl , throughk. Apparentlyl 0 is a
function of the initial value ofl as shown in Fig. 4. A specia
case isl 05

1
2 in which casel does not change as learnin

proceeds as is apparent from Eq.~4! as well as from Fig. 4.
Such a constant-l problem was studied by Biehl and Riegle
@11# who concluded

eg5
3

2a
~11!

for the AdaTron algorithm. Our formula~10! reproduces this
result whenl 05

1
2. If one takesl 0 as an adjustable paramete

-
n,

In

g.
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55 4547ON-LINE AdaTron LEARNING OF UNLEARNABLE RULES
it is possible to minimizeeg by maximizingk in the denomi-
nator of Eq.~10!. The smallest value ofeg is achieved when
l 05pc/2&, yielding

eg5
4

3a
, ~12!

which is smaller than Eq.~11! for a fixed l . We therefore
have found that the asymptotic behavior of the generalizat
error depends upon whether or not the student weight vec
is normalized and that a better result is obtained for the u
normalized case. We plot the generalization error for t
present learnable case with the initial value ofl init50.1 in
Fig. 5. We see that the Hebbian learning has the high
generalization ability and the AdaTron learning shows th
slowest decay among the three algorithms in the initial sta
of learning. However, as the number of presented patte
increases, the AdaTron algorithm eventually achieves t
smallest value of the generalization error. In this sense
AdaTron learning algorithm is the most efficient learnin
strategy among the three in the case of the learnable rule

B. Unlearnable case

For the unlearnable case, there can exist only one fix
point l 05

1
2. This reason is, for finitea, EAd appearing in Eq.

~4! does not vanish in the limit of largea andEAd has a finite
value for aÞ`. For this finiteEAd , the above differential
equation has only one fixed pointl 05

1
2. In contrast, for the

learnable case,EAd behaves asEAd;c«3/2 in the limit of
a→` and thusdl/da becomes zero irrespective ofl asymp-
totically. We plot trajectories in theR- l plane fora52 in
Fig. 6 and the corresponding generalization error is plotted

FIG. 4. R- l trajectories of the AdaTron learning for the learn
able casea5`. The fixed point depends on the initial value ofl
5 l init . For the special case ofl init50.5, the flow of l becomes
independent ofa.
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Fig. 7 as an example. From Fig. 6, we see that the destina
of l is 1

2 for all initial conditions. Figure 7 tells us that for the
unlearnable casea52, the AdaTron learning has the lowes
generalization ability among the three. We should notice t

FIG. 6.R- l trajectories of the AdaTron learning for the unlear
able casea52. All flows of l converge to the fixed point a
l 05

1
2.

FIG. 5. Generalization errors of the Adatron, perceptron, a
Hebbian learning algorithms for the learnable casea5`. The ini-
tial value of l is l init50.1 for all algorithms. The AdaTron learning
shows the fastest convergence among the three.
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4548 55JUN-ICHI INOUE AND HIDETOSHI NISHIMORI
the generalization error decays to its asymptotic value,
residual erroremin , aseg2emin;a21/2 for the Hebbian learn-
ing and decays exponentially for perceptron learning@10#.
The residual error of the Hebbian learningemin52H(a) is
also the best possible value of the generalization error
a.ac2 as seen in Fig. 3. In Fig. 8 we also plot the genera
zation error of the AdaTron algorithm for several values

FIG. 7. Generalization errors of the AdaTron, perceptron, a
Hebbian learning algorithms for the unlearnable casea52. The
AdaTron learning shows the largest residual error among the th

FIG. 8. Generalization errors of the AdaTron learning algorith
for the cases ofa5`,2,1, and 0.5.
e

or
-
f

a. For the AdaTron learning of the unlearnable case,
generalization error converges to a nonoptimal valueE(R0)
exponentially.

For all unlearnable cases, theR- l flow is attracted into the
fixed point (R0 ,

1
2), whereR0 is obtained from

dR

daU
l51/2,R5R0

522GAd~R0!50. ~13!

The solutionR0 of the above equation is not the optim
value because the optimal value of the present learn
system is Ropt51 for a.ac2 and Ropt5R*5

2A(2 ln22a2)/2 ln2 for a,ac2 @10#.
From Figs. 3 and 7, we see that the residual erroremin of

the AdaTron learning is larger than that of the conventio
perceptron learning. Therefore we conclude that if the s
dent learns from the unlearnable rules, the on-line AdaT
algorithm becomes the worst strategy among three learn
algorithms as we discussed above although for the learn
case, the on-line AdaTron learning is a sophisticated al
rithm and the generalization error decays to zero as quic
as the off-line learning@14#.

IV. OPTIMIZATION

In Sec. III, we saw that the on-line AdaTron learning fa
to get the best possible value of the generalization error
the unlearnable case and its residual erroremin is larger than
that of the conventional perceptron learning or Hebb
learning. We show that it is possible to overcome this di
culty.

We now consider an optimization for the learning ra
g(a) @10#. This optimization procedure is different from th
technique of Kinouchi and Caticha@15#. As the optimal
value ofR, which gives the best possible value of the ge
eralization error isRopt51 for a.ac2 , we determineg(a)
so thatR is accelerated to become 1. In order to determ
g using the above strategy, we maximize the right-hand s
of Eq. ~5! with respect tog(a) and obtaingopt5(EAdR
2GAd)/REAd . Using this optimal learning rate, Eqs.~4! and
~5! are rewritten as follows:

dl

da
52

~EAdR2GAd!~EAdR1GAd!

2R2EAd
l , ~14!

dR

da
5

~EAdR2GAd!
2

2REAd
. ~15!

For the learnable case, we obtain the asymptotic form
the generalization error from Eqs.~14! and~15! by the same
relationR512«, «→0 as we used for the case ofg51 as

eg5
4

3a
. ~16!

This is the same asymptotic behavior as that obtained
optimizing the initial value ofl as we saw in Sec. III.

Next we investigate the unlearnable case. The asympt
forms ofEAd andEAdR2GAd in the limit of a→` are ob-
tained as

d

e.
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55 4549ON-LINE AdaTron LEARNING OF UNLEARNABLE RULES
EAd;2H~a!1A2/paD ~17!

and

EAdR2GAd;2
4a«D

A2p
. ~18!

Then we get the asymptotic solution of Eq.~15! with respect
to «, R512«, as

«5
2pH~a!1A2paD

4a2D

1

a
. ~19!

As the asymptotic behavior ofE(R) is obtained asE(R)
5eg52H(a)1A2«/p @10#, we find the generalization erro
in the limit of a→` as follows:

eg52H~a!1
&

p
A@2pH~a!1A2paD#/4a2D

1

Aa
,

~20!

where 2H(a) is the best possible value of the generalizat
error for a.ac2 . Therefore our strategy to optimize th
learning rate succeeds in training the student to obtain
optimal overlapR51 for a.ac2 .

For the perceptron learning, this type of optimizati
failed to reach the theoretical lower bound of the general
tion error fora exactly ata5ac15A2 ln2 in which case the
generalization error iseg5

1
2, equivalent to a random gues

because fora5ac1 optimal learning rate vanishes@10#. In
contrast, for the AdaTron learning, the optimal learning r
has a nonzero value even ata5ac1 . In this sense, the on-line
AdaTron learning with optimal learning rate is superior
the perceptron learning.

V. PARAMETER-FREE OPTIMIZATION

In Sec. IV, we were able to get the theoretical low
bound of the generalization error fora.ac2 by introducing
the optimal learning rategopt. However, as the optima
learning rategopt contains a parametera unknown to the
student, the above result can be regarded only as a lo
bound of the generalization error. The reason is that the
dent can get information only about teacher’s output and
knowledge ofa or v5AN(J0•x)/uJ0u. In realistic situations,
the student does not knowa or v and therefore has a large
value of the generalization error. In this section, we constr
a learning algorithm without the unknown parametera using
the asymptotic form of the optimal learning rate.

A. Learnable case

For the learnable case, the optimal learning rate is e
mated in the limit ofa→` as

gopt5
EAdR2GAd

REAd
l. 3

2 l . ~21!

This asymptotic form of the optimal learning rate depends
a only through the lengthl of student’s weight vector. We
therefore adoptg(a) proportional tol , g(a)5h l , also in the
e

-

e

r

er
u-
o

ct

ti-

n

case of the parameter-free optimization and adjust the par
eterh so that the student obtains the best generalization a
ity. Substituting this expression into the differential equati
~5! for R and usingR512« with «→0, we get

d«

da
52F~h!e3/2, ~22!

where we have set

F~h![
2&

p
h2

4

3&p
h2. ~23!

This leads to«5@F(h)/2#22a22. Then, the generalization
error is obtained fromeg5A2«/p as

eg5
2&

pF~h!

1

a
. ~24!

In order to minimizeeg , we maximizeF(h) with respect to
h. The optimal choice ofh in this sense ishopt5

3
2 and we

find in such a case

eg5
4

3a
. ~25!

This is the same asymptotic form as the previo
a-dependent result~16!.

B. Unlearnable case

Next we consider the unlearnable case. The asympt
form of the learning rate we derived in Sec. IV for the u
learnable case is

gopt5
EAdR2GAd

REAd
.2

4a«D/A2p

2H~a!1A2/paD
l5h

l

a
, ~26!

where we used Eq.~19! to obtain the right-most equality an
we set thea-dependent prefactor ofl ash. Using this learn-
ing rate ~26! and the asymptotic forms ofEAd(R51
2«,«→0) and GAd(R512«,«→0) as EAd;2H(a)
1A2/paD and GAd;4aD«/A2p1EAd in the limit of
a→`, we obtain the differential equation with respect to«
from Eq. ~5! as follows:

d«

da
5 1

2 @2H~a!1A2/paD#
h2

a22h
4a

A2p
D

«

a
. ~27!

This differential equation can be solved analytically as

«5
h2@2H~a!1A2/paD#

2~4aDh/A2p21!

1

a
1AS h

a D 4aDh/A2p

, ~28!

whereA is a constant determined by the initial conditio
Therefore, if we chooseh to satisfy 4aDh/A2p21.0, the
generalization error converges to the optimal value 2H(a) as
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eg52H~a!1
A2«

p
52H~a!

1
h

p
A@2H~a!1A2/paD#/~4aDh/A2p21!

1

Aa
.

~29!

In order to obtain the best generalization ability, we mi
mize the prefactor of 1/Aa in the second term of Eq.~29!
and obtain

h5Ap/2
D

a
. ~30!

For thish, the condition 4aDh/A2p21.0 is satisfied. In
general, if we takeh independent ofa, the condition
4aDh/A2p21.0 is not always satisfied. The quantityb
[4aD/A2p takes the maximum value 4/A2pe at a51.
Therefore, whatever value ofa we choose, we cannot obtai
thea21/2 convergence if the product of this maximum val
4/A2pe and h is not larger than unity. This means thath
should satisfyh.A2pe/4.1.033 for the first term of Eq
~28! dominate asymptotically, yielding Eq.~29!, for a non-
vanishing range ofa. In contrast, if we chooseh to satisfy
bh21,0, the generalization error is dominated by the s
ond term of Eq.~28! and behaves as

eg52H~a!1
A2A

p S h

a D 2aDh/A2p

. ~31!

In this case, the generalization error converges less qui
than ~29!. For example, if we chooseh51, we find that the
conditionbh.1 cannot be satisfied by anya and the gen-
eralization error converges as in Eq.~31!. If we seth52
(.A2pe/451.033) as another example, the asympto
form of the generalization error is either Eq.~29! or Eq.~31!
depending on the value ofa.

VI. CONCLUSION

We have investigated the generalization abilities o
simple perceptron trained by the teacher who is also a sim
perceptron but has a nonmonotonic transfer function us
the on-line AdaTron algorithm. For the learnable casea
5`), if we fix the length of the student weight vector asl
5uJu/AN51/2, the generalization error converges to zero
;3/(2a) as Biehl and Riegler reported@11#. However, if we
allow the time development of the length of student weig
vector, the asymptotic behavior of the generalization er
shows dependence on the initial value ofl . When the studen
starts the training process from the optimal length of wei
vector l , we can obtain the generalization erroreg;4/(3a)
which is a little faster than 3/~2a!. As the student is able to
know the length of its own weight vector in principle, we ca
get the better generalization abilityeg;4/(3a) by a heuristic
search of the optimal initial value ofl . On the other hand, if
the width a of the reversed wedge has a finite value, t
generalization error converges exponentially to a nonopti
-
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a-dependent value. In addition, these residual errors
larger than those of the conventional perceptron learning
the whole range ofa. Therefore we conclude that, althoug
the AdaTron learning is powerful for the learnable case@11#
including the situation in which the input vector is structur
@13#, it is not necessarily suitable for learning of the no
monotonic input-output relations.

Next we introduced the learning rate and optimized it. F
the learnable case, the generalization error converges to
as;4/(3a), which is as fast as the result obtained by s
lecting the optimal initial condition for the case of nonop
mizationg51. For this learnable case, the asymptotic fo
of the optimal leaning rate isgopt;3l /2. Therefore, for the
on-line AdaTron learning, it seems that the length of t
student weight vector plays an important role to obtain
better generalization ability. If the task is unlearnable,
generalization error under optimized learning rate conver
to the theoretical lower bound 2H(a) as ;a21 for
a.ac2 . Using this strategy, we can get the optimal resid
error fora even exactly atac1 for which the optimized per-
ceptron learning failed to obtain the optimal residual er
@10#.

We also investigated the generalization ability using a
rameter free learning rate. When the task is learnable,
assumedgopt5h l and optimized the prefactorh. As a result,
we obtainedeg;4/(3a), which is the same asymptotic form
as the parameter-dependent case. Therefore, we can o
this generalization ability by a heuristic choice ofh ; we may
choose the besth by trial and error. On the other hand for th
unlearnable case, we used the asymptotic form of
a-dependent learning rate in the limit ofa→`, gopt
;h l /a, and optimized the coefficienth. The generalization
error then converges to 2H(a) as a21/2 for bh.1. If bh
,1, the generalization error decays to 2H(a) as a2bh/2,
where the exponentbh/2 is smaller than12 becausebh,1.
Similar slowing down of the convergence rate of the gen
alization error by tuning a control parameter was also
ported by Kabashima and Shinomoto in the problem
learning of two-dimensional blurred dichotomy@16#.

In conclusion, we could overcome the difficulty of th
AdaTron learning of unlearnable problems by optimizing t
learning rate and the generalization error was shown to c
verge to the best possible value as long as the widtha of
reversed wedge satisfiesa.ac2 . For the parameter region
a,ac2 , this approach does not work well because the o
mal value ofR is R* instead of 1; our optimization is de
signed to accelerate the increase toR toward 1.

In this paper, we could construct a learning strategy s
able to achieve thea-dependent optimal value 2H(a) for a
.ac2 . However, fora,ac2 , it is a very difficult but chal-
lenging future problem to get the optimal value by improvi
the conventional AdaTron learning.
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