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On-line AdaTron learning of unlearnable rules
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We study the on-line AdaTron learning of linearly nonseparable rules by a simple perceptron. Training
examples are provided by a perceptron with a nonmonotonic transfer function that reduces to the usual
monotonic relation in a certain limit. We find that, although the on-line AdaTron learning is a powerful
algorithm for the learnable rule, it does not give the best possible generalization error for unlearnable problems.
Optimization of the learning rate is shown to greatly improve the performance of the AdaTron algorithm,
leading to the best possible generalization error for a wide range of the parameter that controls the shape of the
transfer function[S1063-651X97)10204-5

PACS numbd(s): 87.10+e

[. INTRODUCTION the critical loading rate of the model of Hopfield type—7]
or the optimal storage capacity of perceptf8his known to
The problem of learning is one of the most interestingincrease dramatically by nonmonotonicity. It is also worth
aspects of feed-forward neural netwofks-3]. Recent ac- hoting that perceptrons with the nonmonotonic transfer func-
tivities in the theory of learning have gradually shifted to- tion can be regarded as a toy model of a multilayer percep-
ward the issue of on-line learning. In the on-line learningtron, a parity maching].
scenario, the student is trained only by the most recent ex- In this context, Inoue, Nishimori, and Kabashirfit0]
ample, which is never referred to again. In contrast, in theecently investigated the problem of on-line learning of un-
off-line (or batch learning scheme, the student is given a seteéarnable rules where the teacher is a nonmonotonic percep-
of examples repeatedly and memorizes these examples sot@n: the output of the teacher i§,(v)=sgriv(a—v)(a
to minimize the global cost function. Therefore, the on-line+v)], where v is the input potential of the teacher
learning has several advantages over the off-line method. Fer VN(J°-x), with x being a training example, and the stu-
example, it is not necessary for the student to memorize theent is a simple perceptron. For this system, difficulties of
whole set of examples, which saves a lot of memory spacdearning for the student can be controlled by the widtbf
In addition, theoretical analysis of on-line learning is usuallythe reversed wedge. =« or a=0, the student can learn
much less complicated than that of off-line learning that of-the rule perfectly and the generalization error decays to zero
ten makes use of the replica method. as a3 for the conventional perceptron learning algorithm
In many of the studies of learning, authors assume that thenda~ Y2 for the Hebbian learning algorithm, wheseis the
teacher and student networks have the same structures. Thamber of presented examplps divided by the number of
problem is called learnable in these cases. However, in thimput nodesN. For finite a, the student cannot generalize
real world we find innumerable unlearnable problems whergerfectly and the generalization error converges exponen-
the student is not able to perfectly reproduce the output ofially to a nonvanishinga-dependent value.
teacher in principle. It is therefore both important and inter- In this paper we investigate the generalization ability of
esting to devote our efforts to the study of learning unlearnstudent trained by the on-line AdaTron learning algorithm
able rules. with examples generated by the above-mentioned nonmono-
If the teacher and student have the same structure, a nattenic rule. The AdaTron learning is a powerful method for
ral strategy of learning is to modify the weight vector of learnable rules both in on-line and off-line modes in the
studentJ so that this approaches teacher's weigAtas sense that this algorithm gives a fast decay, proportional to
quickly as possible. However, if the teacher and student have *, of the generalization errdil1-13, in contrast to the
different structures, the student trained to satisigJ’ o ®anda Y2 decays of the perceptron and Hebbian algo-
sometimes cannot generalize the unlearnable rule better thaithms. We investigate the performance of the AdaTron
the student withJ+J°. Several years ago, Watkin and Rau learning algorithm in the unlearnable situation and discuss
[4] investigated the off-line learning of unlearnable rulethe asymptotic behavior of the generalization error.
where the teacher is a perceptron with a nonmonotonic trans- This paper is organized as follows. In Sec. Il, we explain
fer function while the student is a simple perceptron. Theythe generic properties of the generalization error for our sys-
discussed the case where the number of examples is of ordm and formulate the on-line AdaTron learning. Some of
unity and therefore did not derive the asymptotic form of thethe results of our previous papr0] are collected here con-
generalization error in the limit of large number of training cerning the perceptron and Hebbian learning algorithms that
examples. Furthermore, as they used the replica method uare to be compared with the AdaTron learning. Section llI
der the replica symmetric ansatz, the result may be unstabléeals with the conventional AdaTron learning both for learn-
against replica symmetry breaking. able and unlearnable rules. In Sec. IV we investigate the
For such a type of nonmonotonic transfer function, a loteffect of optimization of the learning rate. In Sec. V the issue
of interesting phenomena have been reported. For examplef optimization is treated from a different point of view
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where we do not use the paramegerwhich is unknown to E(R)
the student, in the learning rate. In Sec. VI we summarize our
results and discuss several future problems. 1 ]
G = 00 w—— o
a=20 --- J
IIl. THE MODEL SYSTEM a= (1)-(5) """ o
¢ ;:lo ----- <

Let us first fix the notation. The input signal comes from
N input nodes and is represented byNstimensional vector
X. The components of are randomly drawn from a uniform
distribution and thermx is normalized to unity. Synaptic con-
nections from input nodes to the student perceptron are also .
expressed by aM-dimensional vectod, which is not nor- 0.5
malized. The teacher receives the same input signal
through the normalized synaptic weight vecir The gen-
eralization error iseqg=({O(—T,(v)S(u)))), where S(u) .
=sgng) is the student output with the internal potential e

-~ -
---------------

= N(J-x)/|J| and ((--)) stands for the average over the ,f'
distribution function s
i
1 (u>+v2—2Rw) 0 T | T
PrlUp)=——=exp——F———|. (1 -1 -0.5 0 05 1
U= IR "[ 2ary | W .

Here R stands for the overlap between the teacher and stu-
dent weight vectorsR=(J°- J)/|3°|J|. This distribution has
been derived from randomness»ofind is valid in the limit

FIG. 1. Generalization error as a function dR for
a=»,2,1,0.5, anca=0.

N—oe. L . . It may be useful to review some of the results of Inoue,
_ The generalization errog, is easily calculated as a func- Nishimori, and Kabashimd10] who studied the present
tion of R as follows[10]: problem under the perceptron and Hebbian algorithms. For
the conventional perceptron learning, the generalization error
» R decays to zero as~ ' if the rule is learnable =),
fg:E(R)Ezfa DuH| - J1I-R2 whereas it converges to a nonvanishing valgéR=1
—2A), where A=exp(—a%2), exponentially for the un-
+2 f "o |- ) 2
O M Tre) @ R
1 =
whereH (x)= [ Dt with Dt= exp(—t%2)/\2. Itis impor- e
tant that this expression is independent of specific learning yd
algorithm. Minimization ofE(R) with respect tdR gives the '.f'
theoretical lower bound, or the best possible value, of the 0.5 s
generalization error for givea. In Fig. 1 we showE(R) for ) F2
several values od. This figure indicates that the generaliza- ;
tion error goes to zero if the student is trained so that the ,l
overlapR becomes 1 foa=o andR=—1 for a=0. If the I3
parameter is larger than some critical value., =2 In2 O Fo
=1.177, E(R) decreases monotonically from 1 to 0 Rs ]
increases from-1 to 1. Whena is smaller thara;, a local +/
minimum appears &= R, = — /(2 In2—a?)/2 In2, but the ;i'
global minimum is still atR=1 as long asa is larger than -0.5+ i Optimal value ——
a,,=0.80. If a is less thana.,, the global minimum is i Pegegg.o“ o
found atR=R,, not atR=1. This situation is depicted in i A(faTrlf)ﬂ —
Figs. 2 and 3 where we show the optimal overRygiving ,{i'
the smallest value oE(R) and the corresponding best pos- .4 i - : : ,
sible value of the generalization error as functionsaof 0 1 2 3 4 5
From these two figures, we see that the optimal overlap that acy el a

gives the theoretical lower bound shows a first-order phase
transition ata=a.,. Therefore, our efforts should be di-
rected to finding the best strategy that gives the best possible FiG. 2. Optimal overlaR that gives the best possible value and
value of the generalization error for a wide range of theoverlaps that give the residual error for Hebbian, perceptron, and
parametei. AdaTron learning algorithms.
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FIG. 3. Best possible value of the generalization error, the re-
sidual generalization errors of conventional Hebbian, perceptron, (8
and AdaTron learning algorithms are plotted as functionsaof
Except fora=» anda=0, the AdaTron learning cannot lead the Equations(4) and(5) determine the learning process. In the
student to the best possible value of the generalization error. lfiest of the present section we restrict ourselves to the case of
addition, for a finite value of, the residual generalization error of g=1 corresponding to the conventional AdaTron learning.
the AdaTron learning is larger than that of the perceptron learning.
| b Thi ue &(R) is | H he b A. Learnable case
earnable case. This value is larger than the best _ .
possible value as seen in Fig. 3. Introduction of optimization e first consider the case @(a)=1 anda=c, the
processes of the learning rate improves the performance s%e_arnab!e rgle. We investigate the asymptotic behavior of the
nificantly in the sense that the generalization error then condeneralization error wheR approaches 1R=1—¢, ¢—0,
verges to the best possible value whena,,. For the con- andl IO' a constant. From Eg@) and (8), we find Epq
ventional Hebbian learning, the generalization error decays ce¥ andGag~ (c— 2‘[/772)8_2 with c=8/(3v2m). Then
to the theoretical lower bound @s *2 not only in the learn-  =d- (5 is solved as:=(2/k)a "~ with

able limit a— but for a finite range of, a>a;,;. How- ol —1 2VI—c

. . 0 v
ever, fora<a.;, the generalization error does not converge k= — C+ . (9
to the optimal value. 215 mlo

Using this equation and Ed2), we obtain the asymptotic
form of the generalization error as

2v2 1
€g=E(R)~ ﬁ— o (10)

IIl. LEARNING DYNAMICS

The on-line training dynamics of the AdaTron algorithm
is

JMI=3"—g(a)ub (— T,4(v)S(u))X, )
The above expression of the generalization error depends on

wherem stands for the number of presented patterns ang  the asymptotic value df, throughk. Apparentlyl, is a
g(e) is the leaning rate. It is straightforward to obtain the function of the initial value of as shown in Fig. 4. A special
recursion equations for the overld®™=(J"-3°)/[JM|3°  case islo=1 in which casel does not change as learning
and the length of the student weight vectBe=|J™/\N. In  proceeds as is apparent from Eq) as well as from Fig. 4.
the limit N—o, these two dynamical quantities become self-Such a constartproblem was studied by Biehl and Riegler
averaging with respect to the random training dateFor  [11] who concluded
continuous timex=m/N in the limit N—o, m—o with «
kept finite, the evolutions oR and| are given by the fol- 3

lowing differential equation§10]: €97 %4 (11)
dl g%Eng for the AdaTron algorithm. Our formuléL0) reproduces this
da_ 21 9 Ead» (4) 1

result when = 3. If one taked ; as an adjustable parameter,
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FIG. 4. R-| trajectories of the AdaTron learning for the learn-  FIG. 5. Generalization errors of the Adatron, perceptron, and
able casea=<. The fixed point depends on the initial value lof Hebbian learning algorithms for the learnable casex. The ini-

=l,y.. For the special case df,;;=0.5, the flow ofl becomes tial value ofl is I;;=0.1 for all algorithms. The AdaTron learning
independent ofv. shows the fastest convergence among the three.

it is possible to minimize, by maximizingk in the denomi-  Fig. 7 as an example. From Fig. 6, we see that the destination
nator of EQ.(10). The smallest value of is achieved when of | is 1 for all initial conditions. Figure 7 tells us that for the

lo=mc/2v2, yielding

unlearnable casa=2, the AdaTron learning has the lowest

generalization ability among the three. We should notice that

4

6923—(1, (12)

which is smaller than Eqg11) for a fixedl. We therefore 05

R

have found that the asymptotic behavior of the generalization ™
error depends upon whether or not the student weight vector
is normalized and that a better result is obtained for the un-
normalized case. We plot the generalization error for the 0.4
present learnable case with the initial valuelgf=0.1 in

Fig. 5. We see that the Hebbian learning has the highest
generalization ability and the AdaTron learning shows the
slowest decay among the three algorithms in the initial stage

of learning. However, as the number of presented patterns
increases, the AdaTron algorithm eventually achieves the
smallest value of the generalization error. In this sense the 0.2
AdaTron learning algorithm is the most efficient learning
strategy among the three in the case of the learnable rule.

0.1
B. Unlearnable case

For the unlearnable case, there can exist only one fixed

pointl,=3. This reason is, for finita, E,q appearing in Eq. 0

(4) does not vanish in the limit of large andE 4 has a finite 0

value fora#. For this finiteE,y, the above differential
equation has only one fixed poihg=3. In contrast, for the
learnable caseE,y behaves a€ g~ce®? in the limit of

a— and thusdl/d« 'becorjneslzero irrespective bﬁsym_p- FIG. 6. R-| trajectories of the AdaTron learning for the unlearn-
totically. We plot trajectories in th®-I plane fora=2 in  able casea=2. All flows of | converge to the fixed point at

Fig. 6 and the corresponding generalization error is plotted im,= 3.
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a. For the AdaTron learning of the unlearnable case, the
generalization error converges to a nonoptimal va(R)
exponentially.

For all unlearnable cases, tRel flow is attracted into the
fixed point Ry,3), WhereR, is obtained from

dR 2Gpq(Ry) =0 (13
qd =7 45adRo) TV
daf ;- Ry

The solutionR, of the above equation is not the optimal
value because the optimal value of the present learning
system is Ry=1 for a>a,, and Ry=R,=

—+(21n2—2a?)/2 In2 for a<ag, [10].

From Figs. 3 and 7, we see that the residual egfgy of

the AdaTron learning is larger than that of the conventional
perceptron learning. Therefore we conclude that if the stu-
dent learns from the unlearnable rules, the on-line AdaTron
algorithm becomes the worst strategy among three learning
algorithms as we discussed above although for the learnable
case, the on-line AdaTron learning is a sophisticated algo-
rithm and the generalization error decays to zero as quickly
as the off-line learning14].

FIG. 7. Generalization errors of the AdaTron, perceptron, and
Hebbian learning algorithms for the unlearnable case2. The
AdaTron learning shows the largest residual error among the three. In Sec. Ill, we saw that the on-line AdaTron learning fails

to get the best possible value of the generalization error for
the generalization error decays to its asymptotic value, théhe unlearnable case and its residual eetgy, is larger than
residual errofey,, aSeg—emm~ofl’2for the Hebbian learn- that of the conventional perceptron learning or Hebbian
ing and decays exponentially for perceptron learnid@].  learning. We show that it is possible to overcome this diffi-
The residual error of the Hebbian learnirg;,=2H(a) is  culty.
also the best possible value of the generalization error for We now consider an optimization for the learning rate
a>a, as seen in Fig. 3. In Fig. 8 we also plot the generali-g(«) [10]. This optimization procedure is different from the
zation error of the AdaTron algorithm for several values oftechnique of Kinouchi and Catichgl5]. As the optimal

IV. OPTIMIZATION

0.4 %o,

................................................................

value ofR, which gives the best possible value of the gen-
eralization error isR,,=1 for a>a.,, we determineg(a)
so thatR is accelerated to become 1. In order to determine
g using the above strategy, we maximize the right-hand side
of Eqg. (5 with respect tog(a) and obtaingq,=(EadR
—Gaq)/REag . Using this optimal learning rate, Eq4) and

(5) are rewritten as follows:
o, dl (EadR—Gag) (EadR+Gag)
—_—=— > [, (14
0.3 da 2R“E g
dR (EpgR—Gpg)?
dR_ (EsR—Gpa)® s

da  2REng

0.2 a=o ——
=2.0 == . ,
Z:l.O ...... For the learnable case, we obtain the asymptotic form of
a=0.5 e the generalization error from Eqdl4) and(15) by the same
0.1 a=0 ==== relationR=1—¢, £e—0 as we used for the case g1 as
: (16)
Gg ==
0 : : | 3a
0 10 20 30 40

This is the same asymptotic behavior as that obtained by
optimizing the initial value of as we saw in Sec. lIl.
Next we investigate the unlearnable case. The asymptotic

FIG. 8. Generalization errors of the AdaTron learning algorithmforms of Epg and EpqR— G pq in the limit of a—oo are ob-

for the cases oh==,2,1, and 0.5.

tained as
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Eaq~2H(a) + 2/maA (17)  case of the parameter-free optimization and adjust the param-
eter z so that the student obtains the best generalization abil-
and ity. Substituting this expression into the differential equation
(5) for R and usingR=1-¢ with e—0, we get
E\R—G dacd (18)
AdR T O™ T T — - de
v2m Jo="F(me” (22
Then we get the asymptotic solution of Ed5) with respect
toe, R=1-¢, as where we have set
27H(a)+V2maA 1
o= 4)a2A a 19 F(n)= 22 7 2 7. (23
™ 32w

As the asymptotic behavior dE(R) is obtained aE(R) _ o
= €,=2H(a) + y2¢/ [10], we find the generalization error This leads tos =[F(#7)/2] ?a 2. Then, the generalization

in the limit of @— as follows: error is obtained frome,= \2&/ 7 as
V2 1 2v2 1
—2H(a)+ — V[27H(a)+ V27aA]/4a2A —, €= o (24)
€g (a) - [27H(a) mal] \/; 9" 7F(n) a
(20)

In order to minimizeey, we maximizer () with respect to
where H(a) is the best possible value of the generalization». The optimal choice of; in this sense isjo=73 and we
error for a>a.,. Therefore our strategy to optimize the find in such a case
learning rate succeeds in training the student to obtain the
optimal overlapR=1 for a>a,,. 4

For the perceptron learning, this type of optimization €973, (25
failed to reach the theoretical lower bound of the generaliza-
tion error fora exactly ata=ac; =2 In2 in which case the Thijs is the same asymptotic form as the previous
generalization error ig,= 3, equivalent to a random guess a-dependent resultL6).
because fom=a.; optimal learning rate vanishd40]. In
contrast, for the AdaTron learning, the optimal learning rate
has a nonzero value evenaat a.; . In this sense, the on-line
AdaTron learning with optimal learning rate is superior to Next we consider the unlearnable case. The asymptotic
the perceptron learning. form of the learning rate we derived in Sec. IV for the un-

learnable case is

B. Unlearnable case

V. PARAMETER-FREE OPTIMIZATION
EAdR_GAd 4a8A/\/27T

In Sec. IV, we were able to get the theoretical lower Yopt™ RE =- —
bound of the generalization error far>a., by introducing Ad 2H(a)+ y2/mad
the optimal learning ratey,,. However, as the optimal
learning rateg,,; contains a parametea unknown to the

|=n£, (26)

where we used Eq19) to obtain the right-most equality and
wfe set thea-dependent prefactor dfas z. Using this learn-

student, the above result can be regarded only as a lo X 8
bound of the generalization error. The reason is that the stn9 rate (26) and the asymptotic forms oF,y(R=1
—e,6—0) and Gpy(R=1—¢,6e—0) as Epg—~2H(a)

dent can get information only about teacher’s output and no i “r
knowledge ofa or v = N(3°-x)/|3°. In realistic situations, +V2/mad and Gag~4ale/y2m+Exq in the limit of

the student does not knoaor v and therefore has a larger @— % We obtain the differential equation with respectzto
value of the generalization error. In this section, we construcfom EQ. (5) as follows:

a learning algorithm without the unknown paramegarsing

the asymptotic form of the optimal learning rate. de | 7? 4a €
da—z[ZH(a)Jr Vv2/maA] Pk N A o (27

A. Learnable case

For the learnable case, the optimal learning rate is estiThis differential equation can be solved analytically as
mated in the limit ofa—~ as

[2H(a)+2/maA] 1 4adql\Zm
EnR—Gay o= TL2H@ V2 ]—+A(ﬂ) @9
op=™ —RE,, |2 (22) 2(4ahn/\27-1) @ e

This asymptotic form of the optimal learning rate depends orwhere A is a constant determined by the initial condition.
a only through the length of student’'s weight vector. We Therefore, if we choose to satisfy AA »/\27—1>0, the
therefore adopg(«) proportional td, g(«)= 7l, alsointhe generalization error converges to the optimal valti{ &) as
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V2e
€g=2H(a)+

=2H(a)

+ 7 \J[2H(a) + V2imaA]i(4an g2 m—1) =
(29

In order to obtain the best generalization ability, we mini-
mize the prefactor of 1Ja in the second term of E¢29)
and obtain

n=~mwl2 . (30
For this 7, the condition 4A 5/\27—1>0 is satisfied. In
general, if we taken independent ofa, the condition
4aA p/\27—1>0 is not always satisfied. The quantity
=4aA/\27 takes the maximum value d27e at a=1.
Therefore, whatever value afwe choose, we cannot obtain
the &~ Y2 convergence if the product of this maximum value
4/\2e and 7 is not larger than unity. This means that
should satisfyn>\2mwe/4=1.033 for the first term of Eq.
(28) dominate asymptotically, yielding Eq29), for a non-
vanishing range o#. In contrast, if we choose to satisfy

bn—1<0, the generalization error is dominated by the sec-

ond term of Eq(28) and behaves as

Jﬁ(z

eg=2H(a)+ T

2aA 9l 27

(31
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a-dependent value. In addition, these residual errors are
larger than those of the conventional perceptron learning for
the whole range o&. Therefore we conclude that, although
the AdaTron learning is powerful for the learnable cHkH
including the situation in which the input vector is structured
[13], it is not necessarily suitable for learning of the non-
monotonic input-output relations.

Next we introduced the learning rate and optimized it. For
the learnable case, the generalization error converges to zero
as ~4/(3a), which is as fast as the result obtained by se-
lecting the optimal initial condition for the case of nonopti-
mizationg= 1. For this learnable case, the asymptotic form
of the optimal leaning rate igo,—~31/2. Therefore, for the
on-line AdaTron learning, it seems that the length of the
student weight vector plays an important role to obtain a
better generalization ability. If the task is unlearnable, the
generalization error under optimized learning rate converges
to the theoretical lower bound HXa) as ~a ! for
a>a.,. Using this strategy, we can get the optimal residual
error fora even exactly at.; for which the optimized per-
ceptron learning failed to obtain the optimal residual error
[10].

We also investigated the generalization ability using a pa-
rameter free learning rate. When the task is learnable, we
assumedy,,—= »l and optimized the prefactoy. As a result,
we obtainedeg~4/(3a), which is the same asymptotic form
as the parameter-dependent case. Therefore, we can obtain
this generalization ability by a heuristic choice »f we may
choose the besj by trial and error. On the other hand for the
unlearnable case, we used the asymptotic form of the
a-dependent learning rate in the limit ofk—%, ggy
~nlla, and optimized the coefficien. The generalization

In this case, the generalization error converges less quicklgrror then converges toHXa) as a~ Y2 for by>1. If by

than (29). For example, if we choosg=1, we find that the
conditionb#>1 cannot be satisfied by arayand the gen-
eralization error converges as in E®1). If we set =2

<1, the generalization error decays tti@a) as a °7?,

where the exponertiz/2 is smaller tharg becausen 7<<1.
Similar slowing down of the convergence rate of the gener-

(>V2me/4=1.033) as another example, the asymptoticalization error by tuning a control parameter was also re-

form of the generalization error is either E§9) or Eq.(31)
depending on the value @af.

VI. CONCLUSION

ported by Kabashima and Shinomoto in the problem of
learning of two-dimensional blurred dichotormi6].

In conclusion, we could overcome the difficulty of the
AdaTron learning of unlearnable problems by optimizing the
learning rate and the generalization error was shown to con-
verge to the best possible value as long as the wadthf

_We have investigated the generalization abilities of areyersed wedge satisfies>a,,. For the parameter region
simple perceptron trained by the teacher who is also a S'mp|§<acz, this approach does not work well because the opti-

perceptron but has a nonmonotonic transfer function using. .| value ofR is R
*

the on-line AdaTron algorithm. For the learnable case (
=), if we fix the length of the student weight vector las

= |J|/\/N= 1/2, the generalization error converges to zero agp

~3/(2«a) as Biehl and Riegler reportéd1]. However, if we

instead of 1; our optimization is de-
signed to accelerate the increaseRtdoward 1.

In this paper, we could construct a learning strategy suit-
e to achieve tha-dependent optimal valueta) for a
>ac,. However, fora<ag,, it is a very difficult but chal-

allow the time development of the length of student weightienging future problem to get the optimal value by improving
vector, the asymptotic behavior of the generalization errogne conventional AdaTron learning.

shows dependence on the initial valud ofVhen the student

starts the training process from the optimal length of weight

vector|, we can obtain the generalization erigqf~4/(3a)
which is a little faster than &a). As the student is able to
know the length of its own weight vector in principle, we can
get the better generalization abiliéy~ 4/(3) by a heuristic
search of the optimal initial value ¢f On the other hand, if
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